Sri Lanka Institute of Information Technology

Fundamentals Of Data Mining (IT3051)

Continuous Assignment – 2024, Semester 1

Final Report – Mini Project

Ranasinghe R.Y.G	IT22253880
Gamage M.P.L	IT22578082
Thiyanima H.E.S	IT22271600
Dilshan H.M.T.W	IT22562456
Handapangoda C.N	IT22586070

Table of Content

- Introduction
- Dataset Features
- Data Collection
- Feature Engineering
- Data cleaning
- Exploratory Data Analysis
- Data Preprocessing /Model Evaluation
- The Project Structure
- User Interface
- Benefits of the proposed solution
- Conclusion
- Project Team, Roles, Responsibilities

Introduction

In the ever-evolving financial landscape, vehicle loan companies face increasing pressure to make informed, data-driven decisions about potential borrowers. The challenge lies in accurately assessing the risk associated with each loan applicant, ensuring that loans are granted to clients who are likely to repay, thereby reducing defaults and financial losses. To address this challenge, we are developing a predictive system using advanced machine learning techniques that helps vehicle loan companies determine whether a client is suitable or not for receiving a vehicle loan.

This project involves the use of historical data related to clients' financial and personal attributes to train a predictive model capable of classifying applicants based on their repayment likelihood. By leveraging client variables such as income, credit history, employment status, and existing liabilities, the model aims to provide a reliable assessment of loan repayment capability.

The demand for predictive solutions in the financial sector is on the rise, driven by the need for minimizing loan defaults while maximizing profitable lending opportunities. Traditional methods of credit assessment, such as manual review and scoring, are often time-consuming and prone to inaccuracies due to human error and bias. In contrast, automated machine learning models provide a scalable, unbiased, and data-driven approach to evaluating creditworthiness, enhancing the efficiency and effectiveness of decision-making.

Moreover, the rapid growth in the vehicle loan market, fueled by the increased affordability of vehicles and favorable lending conditions, has led to a surge in demand for more sophisticated risk management tools. Predictive systems not only benefit financial institutions by reducing risks but also they provide a smoother and faster experience for borrowers, who can receive timely responses to their loan applications. This project aims to fulfill these needs by empowering vehicle loan companies with a robust solution to enhance their decision-making processes in today's competitive and dynamic market.

Dataset Features

Dataset – <u>Automobile Loan Default Dataset (kaggle.com)</u>

Features	Description
Client_Income	Income of the client
Bike_Owned	Number of bikes owned by the client
Active_Loan	Number of active loans
House_Own	Number of houses owned by the client
Child_Count	Number of children client has
Credit_Amount	Loan amount requested by the applicant
Loan_Annuity	Periodic loan repayment amount
Accompany_Client	Client accompanied by another person.
Client_Income_Type	Income type of the client
Client_Education	Education level of the client
Client_Marital_Status	Married or unmarried
Client_Gender	Gender of the client
Loan_Contract_Type	Type of the loan
Client_Housing_Type	Type of housing client resides in.
Population_Region_Relative	Comparison of population size by region
Employed_Days	Employed days of the client
Registration_Days	Registration days
Own_House_Age	Age of the client's own house
Workphone_Working	Whether the work phone working or not
Client_Occupation	Job or profession of the client
Client_Family_Members	Number of family members

Cleint_City_Rating	Rating of the clients residential city
Application_Process_Day	Application process day
Application_Process_Hour	Application process hour
Type_Organization	Organization type
Credit_Bureau	Agency that collects credit information

Data Collection

• Importing Packages

[1]: import pandas as pd import numpy as np import pickle ★ □ ↑ ↓ 古 Ţ i

```
1.Data Collection
```

[3]: #first few rows of dataset
df.head()

	a	.neau()										
[3]:		ID	Client_Income	Car_Owned	Bike_Owned	Active_Loan	House_Own	Child_Count	Credit_Amount	Loan_Annuity	Accompany_Client	 Client_Permanent_M
	0	12142509	6750	0.0	0.0	1.0	0.0	0.0	61190.55	3416.85	Alone	
	1	12138936	20250	1.0	0.0	1.0	NaN	0.0	15282	1826.55	Alone	
	2	12181264	18000	0.0	0.0	1.0	0.0	1.0	59527.35	2788.2	Alone	
	3	12188929	15750	0.0	0.0	1.0	1.0	0.0	53870.4	2295.45	Alone	
	4	12133385	33750	1.0	0.0	1.0	0.0	2.0	133988.4	3547.35	Alone	

5 rows × 40 columns

Feature Engineering

<pre>#check dataset's info df.info()</pre>			*	(÷	\wedge	↓ 1	2
<class 'pandas.core.frame.<="" th=""><th>DataFrame'></th><th></th><th></th><th></th><th></th><th></th><th></th></class>	DataFrame'>						
RangeIndex: 121856 entries							
Data columns (total 40 col	,						
# Column	Non-Null Count	Dtype					
	11						
0 ID	121856 non-null						
1 Client_Income	118249 non-null	2					
2 Car_Owned	118275 non-null						
3 Bike_Owned	118232 non-null						
4 Active_Loan 5 House Own	118221 non-null 118195 non-null						
_	118218 non-null						
6 Child_Count 7 Credit Amount							
_	118224 non-null	-					
8 Loan_Annuity 9 Accompany Client	117044 non-null						
1 /-	120110 non-null						
10 Client_Income_Type 11 Client Education	118155 non-null	5					
-	118211 non-null	-					
12 Client_Marital_Status 13 Client_Gender	118383 non-null 119443 non-null						
14 Loan Contract Type	118205 non-null	2					
15 Client_Housing_Type	118169 non-null	5					
	ative 116999 non-null						
17 Age_Days	118256 non-null						
18 Employed Days	118207 non-null	2					
19 Registration Days	118242 non-null	5					
20 ID Days	115888 non-null	-					
20 ID_Days 21 Own House Age	41761 non-null	float64					
22 Mobile_Tag	121856 non-null						
23 Homephone_Tag	121856 non-null						
24 Workphone_Working	121856 non-null						
25 Client_Occupation	80421 non-null	object					
26 Client_Family_Members							
27 Cleint_City_Rating	119447 non-null						
28 Application Process D							
29 Application_Process_H							
	h Tag 121856 non-null						
31 Client Contact Work 1							
32 Type Organization	118247 non-null	-					
33 Score_Source_1	53021 non-null	float64					
34 Score_Source_2	116170 non-null						
35 Score_Source_3	94935 non-null	bject					
36 Social Circle Default		float64					
37 Phone_Change	118192 non-null						
38 Credit Bureau	103316 non-null						
39 Default	121856 non-null						

memory usage: 37.2+ MB

[6]: #drop [id] columns because it's not necessary df.drop(columns=['ID', 'Client_Permanent_Match_Tag', 'Client_Contact_Work_Tag','Car_Owned','Mobile_Tag'], inplace=True)

Data Cleaning

df.isna().sum().sort_values(ascending=False)
Own_House_Age	80095
Score_Source_1	68835
Social Circle Default	61928
Client_Occupation	41435
Score_Source_3	26922
Credit_Bureau	18540
ID_Days	5985
Score_Source_2	5686
Population_Region_Relative	4868
Loan Annuity	4826
Client Income Type	3701
Client_Housing_Type	3687
Employed_Days	3666
Phone_Change	3664
Application_Process_Hour	3663
House_Own	3661
Loan_Contract_Type	3651
Client_Education	3645
Child_Count	3638
Credit_Amount	3637
Active_Loan	3635
Registration_Days	3631
Bike_Owned	3624
Client_Income	3622
Age_Days	3617
Type_Organization	3609
Client_Marital_Status	3473
Application_Process_Day	2428
Client_Gender	2413
Client_Family_Members	2410
Cleint_City_Rating	2409
Accompany_Client	1746
Workphone_Working	0
Homephone_Tag	0
Default	0
dtype: int64	

[11]: #Remove all null values df.dropna(axis=0, inplace=True)

df

[11]:		Client_Income	Bike_Owned	Active_Loan	House_Own	Child_Count	Credit_Amount	Loan_Annuity	Accompany_Client	Client_Income_Type	Client_Education
	12	27000.0	0.0	0.0	1.0	0.0	28440.00	1913.40	Alone	Service	Secondary
	102	27000.0	0.0	0.0	1.0	3.0	53366.85	4003.20	Alone	Commercial	Secondary
	126	18000.0	0.0	1.0	1.0	1.0	27000.00	724.95	Alone	Service	Secondary
	161	18000.0	1.0	1.0	1.0	0.0	48149.55	3351.15	Alone	Service	Secondary
	189	15750.0	1.0	0.0	1.0	0.0	57340.80	2072.70	Alone	Service	Graduation
											-
1	121684	9000.0	0.0	0.0	0.0	1.0	32590.80	1663.65	Alone	Service	Secondar
1	121771	16650.0	0.0	0.0	1.0	0.0	51244.65	3741.75	Alone	Govt Job	Secondar
1	121777	9900.0	1.0	1.0	1.0	1.0	76022.55	3028.05	Alone	Service	Secondar
1	121838	31500.0	0.0	0.0	1.0	1.0	94230.00	2767.95	Alone	Govt Job	Secondar
1	121854	38250.0	1.0	0.0	1.0	0.0	45000.00	2719.35	Alone	Service	Graduatio
2	633 row	s × 35 columns									

			~
[12]:	#check the missing value		
·	df.isna().sum().sort_values	(ascending=False)	
[10].	Client_Income	0	
[12].	Application_Process_Hour	8	
	Homephone_Tag	8	
	Workphone_Working	0	
	Client_Occupation	0	
	Client_Family_Members	0	
	Cleint_City_Rating	8	
	Application_Process_Day	8	
	Type_Organization	8	
	ID_Days	8	
	Score_Source_1	8	
	Score_Source_2	8	
	Score_Source_3 Social_Circle_Default	0	
	Phone_Change		
	Credit Bureau	8	
	Own_House_Age	8	
	Registration_Days	- 2	
	Bike_Owned	8	
	Client_Income_Type	0	
	Active_Loan	8	
	House_Own	8	
	Child_Count	8	
	Credit_Amount	8	
	Loan_Annuity	8	
	Accompany_Client Client_Education	0	
	Employed_Days	0	
	Client_Marital_Status	8	
	Client_Gender	8	
	Loan_Contract_Type	8	
	Client_Housing_Type	8	
	Population_Region_Relative	0	
	Age_Days	8	
	Default	8	
	dtype: int64		
[14]:	#check for dupliate values		
	df.duplicated().sum()		
[14]:	129		
[15]:	#Drop duplicates		
	<pre>df = df.drop_duplicates()</pre>		
[16]:	#check for dupliate values a	fter removing them	
	<pre>df.duplicated().sum()</pre>		
[16]:	9		
[88]:	(df == 0).sum()		
[88]:	no_of_dependents	712	
	education	0	
	self_employed income annum	0	
	loan_amount	0	
	loan_term	0	
	cibil_score	0	
	residential_assets_value	0	
	commercial_assets_value	0	
	luxury_assets_value	0	
	bank_asset_value	0	
	loan_status	0	
	dtype: int64		

[18]: #Encode Categorical Variables

from sklearn.preprocessing import LabelEncoder

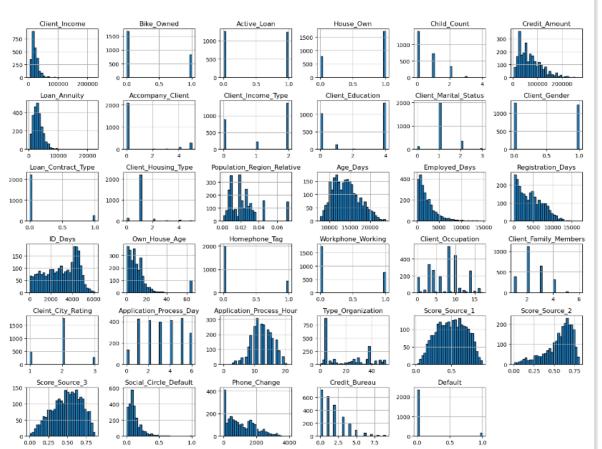
label_encoder = LabelEncoder()

for column in Cat_val:
 if column in df_encoded.columns: # Check if the column exists
 df_encoded[column] = label_encoder.fit_transform(df_encoded[column].astype(str)) else:

print(f"Warning: {column} does not exist in the DataFrame")

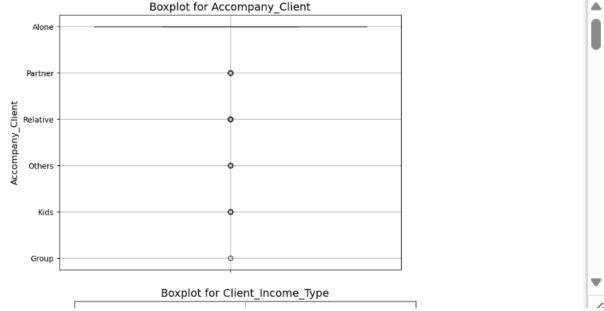
[19]: print(df_encoded.head())

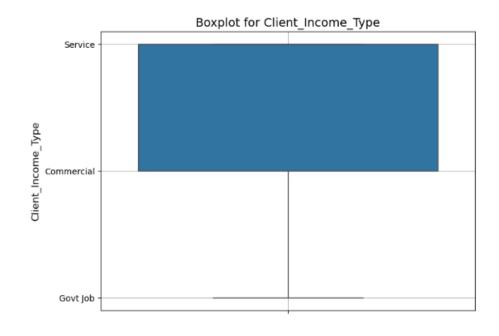
	Client_Income	Bike_Ow	ned Active_		House_Own	Child_Count \		
12	27000.0		0.0	0.0	1.0	0.0		
102	27000.0		0.0	0.0	1.0	3.0		
126	18000.0		0.0	1.0	1.0	1.0		
161	18000.0		1.0	1.0	1.0	0.0		
189	15750.0		1.0	0.0	1.0	0.0		
	Credit_Amount	Loan_An	nuity Accom	pany_	Client Cli	ent_Income_Type	\	
12	28440.00	19	13.40		0	2		
102	53366.85	40	03.20		0	0		
126	27000.00	7	24.95		Ø	2		
161	48149.55	33	51.15		0	2		
189	57340.80	20	72.70		0	2		
	Client_Educati	.on	Application	_Proc	ess_Day Ap	plication_Proces	ss_Hour	\
12		4			4.0		13.0	
102		4			4.0		10.0	
126		4			2.0		11.0	
161		4			6.0		11.0	
189		0			0.0		10.0	
	Type_Organizat	ion Sco	re_Source_1	Scon	e_Source_2	Score_Source_3	\	
12		39	0.268014		0.684114	0.493863		
102		5	0.477169		0.677447	0.581484		
126		50	0.741930		0.642445	0.397946		
161		39	0.135435		0.470134	0.236611		
189		7	0.288840		0.272040	0.684828		
	Social_Circle_	Default	Phone_Chang	e Cr	edit_Bureau	Default		
12		0.1485	0.	0	6.0	0		
102		0.0330	1805.	0	4.0	0		
126		0.1010	2268.	0	0.0	0		
161		0.0021	1753.	0	7.0	0		
189		0.0412	1198.	0	3.0	0		

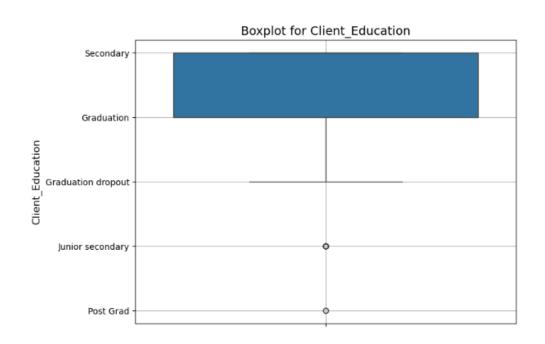

[5 rows x 35 columns]

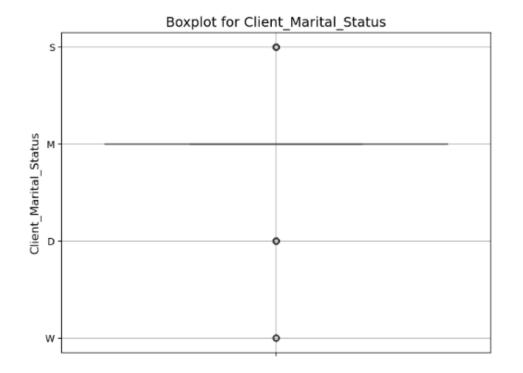
Exploratory Data Analysis

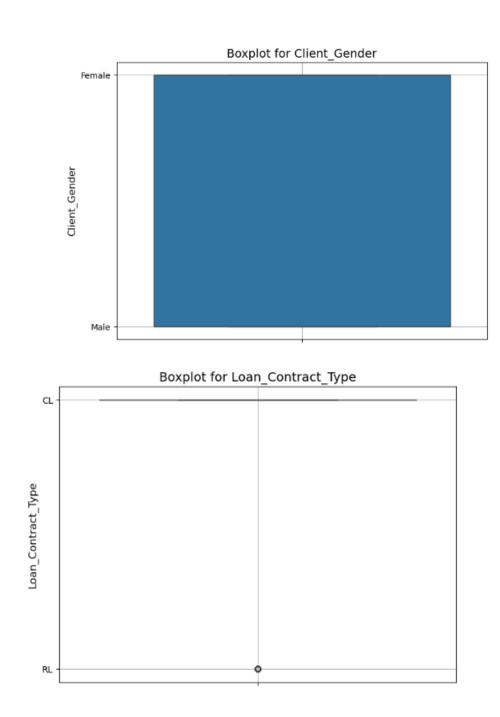
[20]: #Distribution of Numerical Features (Histograms)

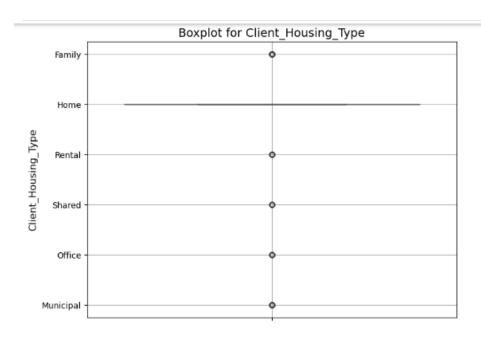

import matplotlib.pyplot as plt

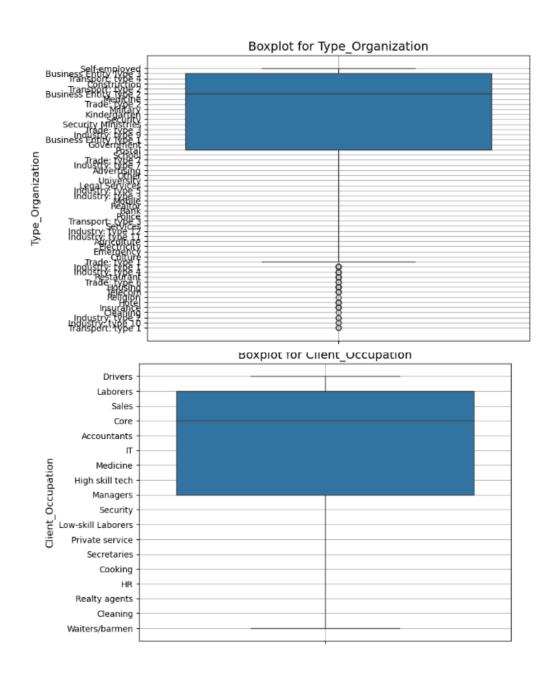

Plot histograms for numerical features df_encoded.hist(figsize=(15, 12), bins=30, edgecolor='black') plt.suptitle('Distribution of Numerical Features', fontsize=18) plt.tight_layout(rect=[0, 0, 1, 0.96]) plt.show()




Distribution of Numerical Features


```
[21]: # Loop through each selected column to plot a boxplot
import seaborn as sns
import matplotlib.pyplot as plt
for feature in Cat_val:
    plt.figure(figsize=(8, 6))
    sns.boxplot(data=df, y=feature) # Plot boxplot
    plt.title(f'Boxplot for (feature)', fontsize=14) # Title
    plt.ylabel(feature, fontsize=12) # LabeL for y-axis
    plt.xlabel(') # Clear x-axis LabeL as it's not needed
    plt.grid(True) # Add grid for better visualization
    plt.show() # Display the plot
```





[25]: import seaborn as sns import matplotlib.pyplot as plt

> # Compute the correlation matrix corr = df_encoded.corr()

Set up the matplotlib figure
plt.figure(figsize=(15, 12)) # Increase the figure size

Adjust the font size for better readability
sns.set(font_scale=1.2)

Draw the heatmap heatmap = sns.heatmap(corr, annot=True, fmt='.2f', cmap='coolwarm', square=True,

cbar_kws={"shrink": .8}, linewidths=0.5, # Add space between squares for clarity annot_kws={"size": 12} # Increase the annotation font size

)

Set title plt.title('Correlation Matrix', fontsize=18) plt.show()

rolation Matrix

	Correlation Matrix	
Client Income	1000 0 20 0 0 0 0 2 3 40 4 20 0 20 1 9 2 0 0 20 1 20 0 0 0 10 2 10 1 10 0 60 0 30 0 30 1 20 0 30 0 20 0 2 20 0 0 0 40 0 20 1 10 1 40 0 30 1 00 0 60 0 30 0 1	
_	-0.02 <mark>.00</mark> 0.000.040.040.040.040.040.040.040.04	
-	-0.02.00 <mark>1.00</mark> 0.02.040.03.040.03.040.010.020.030.020.040.010.040.000.020.030.040.040.020.020.030.000.010.040.020.020.020.020.040.01	
	-0 0-0 0-0 0 <mark>1 00</mark> 0-33 0-9 00 020 033 020 000.063.160 048 039.083 033 040 040 040 149 049 020 033 060 060 112 033 040 020 060 0-0 0-4 048 04	- 1.0
Child Count	-0 020 00 0 0 05 <mark>1 00</mark> 0 020 00 040 060 040 170 040 000 020 040 140 040 140 040 020 040 040 050 040 040 040 070 040 020 020 040 040 020 020 040 040 020 02	
	0.340.020.030.040.021.000.770.070.120.140.050.030.240.040.130.150.040.030.020.070.030.070.030.020.120.000.040.050.150.120.050.040.040.040.040.020.020.040.040.040.04	
Loan Annuity	0.430.000.040.000.000.741.000.050.140.140.040.020.020.240.040.170.120.050.010.030.040.040.040.040.040.040.040.040.04	
Accompany_Client	-0.02/010.03/020.04/070.05 <mark>1.00</mark> 0.00/020.00/020.04/0.04/0.03/01/04/020.04/0.04/0.04/04/04/05/05/05/05/05/05/05/05/05/05/05/05/05/	- 0.8
Client_Income_Type	-0.180.00.040.030.060.120.120.010.01.00.180.040.060.040.020.220.030.020.040.030.060.070.030.010.060.190.040.060.060.140.140.050.070.020.040.01	
Client_Education	0.2-0.08.010.020.040.140.112.020.15 <mark>.00</mark> 0.040.140.060.020.060.050.010.090.000.040.040.040.040.040.040.040.04	
Client_Marital_Status	0.02) 010.020.000.170.050.029.040.040.05 <mark>1.00</mark> 0.050.030.050.050.050.050.050.050.050.05	- 0.6
Client_Gender	-0. 12/0 10.030.060.040.030.022.030.060.140.05 <mark>1.00</mark> 0.040.070.010.010.030.030.040.040.042.042.042.040.022.040.042.040.040	
Loan_Contract_Type	-0.0+0.0#.0#.0#.0#.0+0.0+0.0+0.0+0.0+0.0+	
Client_Housing_Type	0.010.020.020.08.030.040.040.040.040.020.030.070.007.0070.020.030.040.020.040.020.040.030.040.040.040.040.040.040.040.04	0.4
Population_Region_Relative	0.240.02.040.030.04.130.170.050.240.040.050.040.030.02 <mark>1.00</mark> 0.060.040.060.040.020.120.040.040.040.040.040.020.040.04	- 0.4
Age_Days	0.110.0-0.00.080.16.150.120.0-0.08.080.09.010.00.020.06 <mark>1.00.360.22</mark> 0.090.030.050.060.0-0.1-0.0-0.030.060.02 <mark>.50</mark> 0.1-0.180.0-0.120.020.07	
Employed_Days	0.060.00.010.030.08.060.050.040.020.040.070.030.020.030.00 <mark>0.361.00</mark> 0.100.070.040.000.020.040.000.030.040.040.040.210.030.120.020.120.020.120.020.03	
Registration_Days	-0.040.0-0.000.040.14.030.040.040.040.040.040.030.030.020.040.060.220.101.000.020.040.010.040.020.142.090.000.070.000.120.070.040.040.040.040.040.05	- 0.2
ID_Days	-0.020.020.020.040.030.020.030.020.030.040.040.040.040.020.020.020.021.000.040.030.030.110.070.010.040.040.040.120.020.090.0-0.02	
Own_House_Age	-0.13).02.03).01).02).07).03).01).06).09).05).03.02).06).03).03).04).04).0(1 <mark>.0(</mark> 0.04).03).05).00).06).040.03).04).04).04).04).04).04).04).04).04).04	
Homephone_Tag	-0.02.010.060.199.040.040.040.040.070.060.040.020.099.020.042.050.040.010.040.04 <mark>1.000.3</mark> 40.040.060.020.070.040.040.040.040.040.040.040.040.04	- 0.0
	0.060.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+	- 0.0
Client_Occupation	0.020.029.029.029.039.039.049.039.040.039.040.039.049.049.040.049.049.039.049.040.049.049.049.049.049.049.049.04	
Client_Family_Members	-0.020.040.020.03 <mark>0.97</mark> 0.030.030.070.060.03 <mark>0.3</mark> 0.020.040.050.050.140.040.120.110.040.040.040.041.040.060.020.040.040.030.030.030.020.040.01	
Cleint_City_Rating	-0.220.00.030.060.060.120.170.0 0.190.040.040.040.040.040.040.090.070.060.060.120.020.06 <mark>1.00</mark> 0.0 ⁻⁰ .2.0.060.110.30.060.115.020.040.07	0.2
/	-0.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0	
Application_Process_Hour	0.040.010.040.142.040.010.010.020.040.040.020.010.000.240.040.070.040.070.040.040.070.040.040.0	
Type_Organization	-0.040.05.000.030.040.040.040.040.040.040.040.040	0.4
Score_Source_1		0.4
	0.110.030.030.02.010.120.120.040.140.120.00.020.030.00.220.140.090.070.040.030.070.010.030.070.010.030.30.020.140.020.211.000.110.070.160.040.13	
	-0 08 000 00 01 050 030 020 050 020 040 05 030 020 040 05 030 02 180 120 040 120 030 020 030 040 030 000 040 030 110 111 00 040 070 040 19	
	0.160.00.060.040.020.040.060.020.070.090.040.000.020.000.200.040.020.040.020.040.050.060.0420.150.010.060.010.060.010.04 <mark>1.0</mark> 00.040.050.050.040.050.060.040.050.060.040.050.060.040.050.060.040.050.040.050.040.050.060.040.050.040.050.040.050.040.050.060.040.050.060.040.050.05	
_ 0	0.000.000.020.04.030.040.070.040.020.020.020.020.020.020.020.020.02	
_	-0 03 02 00 080 02 040 05 03 040 070 040 010 080 02 02 02 02 040 010 00 060 00 050 00 040 060 02 030 010 050 05	
Default	-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	ome vned ount vned ount vjype vjyp v v v v v v v v v v v v v v v v v v v	
	ient_Income aktive_Loan House_Owned Active_Loan House_Owned adit_Amounty pany_Client pany_Client pany_Client ann_Annuity pany_Client fedder intract_Type on_Relative Age_Days In_Days House_Age phone_Tag house_Age phone_Tag house_Age phone_Tag Clity_Rating Occupation Ny_Members Clity	
	Client, Income Bike_Owned Active_Loan House_Own Crient, Amounity company, Client, Gender Incompany, Client, Gender Incompany, Client, Gender Crient, Gender Client, Gender Contract, Type Region, Relative Age_Days gistration_Days gistration_Days inp. Occupation ent, Occupation ent, Occupation ent, Occupation ent, Criange phone, Crange Credit, Bureaue Credit, Bureaue Credit, Bureaue	
	Client_Income Bike_Owned Active_Loan House_Owned Active_Loan House_Own Credit_Amounity Credit_Amounity Credit_Amounity Contract_Type Income_Type Int_Income_Type Int_Housing_Type Client_Gender Client_Gender Client_Gender Age_Days Employed_Days Employed_Days Bigistration_Days Client_Centact_Type Int_Nores_Station Family_Members Fermity_Members Family_Members Family_Members Family_Members Family_Members Family_Members Bient_City_Rating Int_Cocoupation Family_Members Family_Members Family_Members Family_Members Family_Members Family_Members Family_Members Family_Members Family_Members Bient_City_Rating Int_Cocoupation Score_Source_2 Score_Source_2 Score_Source_2 Phone Charged Phone Charged Default	
	SEON CHER BO OIXHERSEGOOOD	

Data Preprocessing

[24]: #OutLiers detection from scipy.stats import zscore

Trom scipy.scats import 2score

#create a copy of the Dataframe to avoid modifying the original df_copy= df_balanced.copy()

#Calculate Z-scores for each numeric column numeric_columns = df_balanced.select_dtypes(include=[np.number]).columns df_balanced[numeric_columns] = df_balanced[numeric_columns].apply(zscore)

#set a threshold for Z-score
threshold = 3

#Identify outliers based on Z-score
outliers = df_balanced[(np.abs(df_copy[numeric_columns]) > threshold).any(axis=1)]

print(outliers.count())

Client_Income	4696
Bike_Owned	4696
Active_Loan	4696
House_Own	4696
Child_Count	4696
Credit_Amount	4696
Loan_Annuity	4696
Accompany Client	4696
Client_Income_Type	4696
Client_Education	4696
Client_Marital_Status	4696
Client_Gender	4696
Loan_Contract_Type	4696
Client_Housing_Type	4696
Population_Region_Relative	4696
Age_Days	4696
Employed_Days	4696
Registration_Days	4696
ID_Days	4696
Own_House_Age	4696
Homephone_Tag	4696
Workphone_Working	4696
Client_Occupation	4696
Client_Family_Members	4696
Cleint_City_Rating	4696
Application_Process_Day	4696
Application_Process_Hour	4696
Type_Organization	4696
Score_Source_1	4696
Score Source 2	4696
Score_Source_3	4696
Social_Circle_Default	4696
Phone_Change	4696
Credit_Bureau	4696
Default	4696
dtype: int64	

[26]: #Splitting the Data from sklearn.model_selection import train_test_split

Split the balanced dataset into features and target variable
X_balanced = df_balanced.drop('Default', axis=1) # Features
y_balanced = df_balanced['Default'] # Target variable

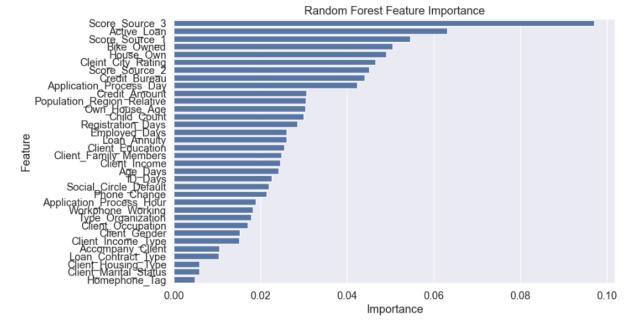
Split into training and testing sets (e.g., 80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X_balanced, y_balanced, test_size=0.2, random_state=42, stratify=y_balanced)

[27]: #Feature Scaling

from sklearn.preprocessing import StandardScaler

Initialize StandardScaler
scaler = StandardScaler()

Fit and transform the training data
X_train_scaled = scaler.fit_transform(X_train)


Transform the testing data
X_test_scaled = scaler.transform(X_test)

1. Random Forest Classifier

plt.show()

[28]: # RandomForest Model from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, confusion_matrix, classification_report import joblib scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) # Use the original training set here X_test_scaled = scaler.transform(X_test) # Use the original test set here # Convert to DataFrame for easy indexing X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns) X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns) # Initialize the RandomForest classifier rf_model = RandomForestClassifier(random_state=42) # Train the model on the training data rf_model.fit(X_train_scaled, y_train) # Make predictions on the test data y_pred_rf = rf_model.predict(X_test_scaled) # Evaluate the model accuracy_rf = accuracy_score(y_test, y_pred_rf) print(f'Random Forest Accuracy: {accuracy_rf:.2f}') # Create confusion matrix conf_matrix_rf = confusion_matrix(y_test, y_pred_rf) print('Random Forest Confusion Matrix:\n', conf_matrix_rf) # Classification report class_report_rf = classification_report(y_test, y_pred_rf) print('Random Forest Classification Report:\n', class_report_rf) # Get feature importances importances = rf_model.feature_importances_ # Create a dataframe for feature importances feature_importance_df = pd.DataFrame({ 'Feature': X_train.columns, 'Importance': importances # Sort by importance feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False) # Plot the feature importance plt.figure(figsize=(10, 6)) sns.barplot(x='Importance', y='Feature', data=feature_importance_df) plt.title('Random Forest Feature Importance')

Random Forest	Accuracy: 0.	98		
Random Forest [[464 6] [13 457]]	Confusion Ma	trix:		
Random Forest	Classificati	on Report	:	
	precision	recall	f1-score	support
-1.0	0.97	0.99	0.98	470
1.0	0.99	0.97	0.98	470
accuracy			0.98	940
macro avg	0.98	0.98	0.98	940
weighted avg	0.98	0.98	0.98	940

[29]: # Identify top features

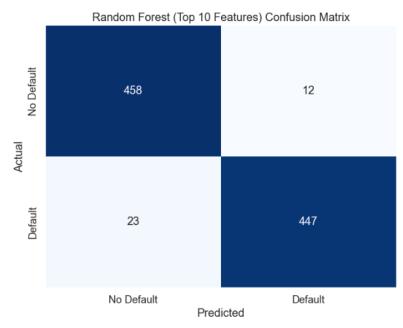
n_top_features = 10
top_features = feature_importance_df.head(n_top_features)['Feature'].tolist()
print("Top Features:", top_features)

Filter the training and testing sets for the top features
X_train_top10 = X_train_scaled[top_features]
X_test_top10 = X_test_scaled[top_features]

Initialize a new RandomForestClassifier
rf_model_top10 = RandomForestClassifier(random_state=42)

Train the model on the filtered training data
rf_model_top10.fit(X_train_top10, y_train)

Make predictions on the filtered test data
y_pred_rf_top10 = rf_model_top10.predict(X_test_top10)


Evaluate the new model
accuracy_rf_top10 = accuracy_score(y_test, y_pred_rf_top10)
print(f'Random Forest (Top 10 Features) Accuracy: {accuracy_rf_top10:.2f}')

Create a new confusion matrix conf_matrix_rf_top10 = confusion_matrix(y_test, y_pred_rf_top10) print('Random Forest (Top 10 Features) Confusion Matrix:\n', conf_matrix_rf_top10)

Classification report
class_report_rf_top10 = classification_report(y_test, y_pred_rf_top10)
print('Random Forest (Top 10 Features) Classification Report:\n', class_report_rf_top10)

Top Features: ['Score_Source_3', 'Active_Loan', 'Score_Source_1', 'Bike_Owned', 'House_Own', 'Cleint_City_Rating', 'Score_Source_2', 'Credit_Burea u', 'Application_Process_Day', 'Credit_Amount'] Random Forest (Top 10 Features) Accuracy: 0.96 Random Forest (Top 10 Features) Confusion Matrix: [[458 12] [23 447]] Random Forest (Top 10 Features) Classification Report: precision recall f1-score support -1.0 0.95 0.97 0.96 470 1.0 0.97 0.95 0.96 470

1.0	0.97	0.95	0.96	470
accuracy			0.96	940
macro avg	0.96	0.96	0.96	940
weighted avg	0.96	0.96	0.96	940

2. Support Vector classifier(SVM)

[33]: #SVM ModeL

Import necessary Libraries
from sklearn.svm import SVC

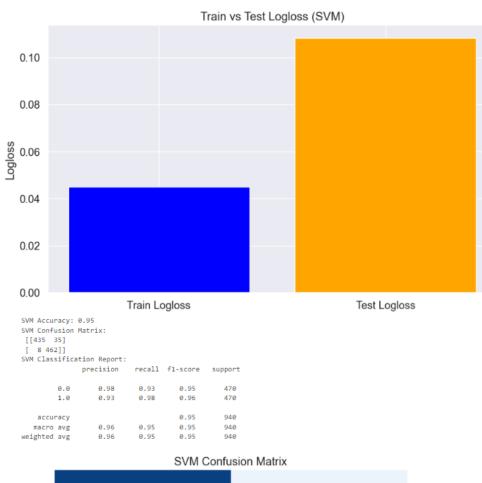
Initialize the Support Vector Classifier (SVC) with probability=True for log loss
svc_model = SVC(probability=True, random_state=42)

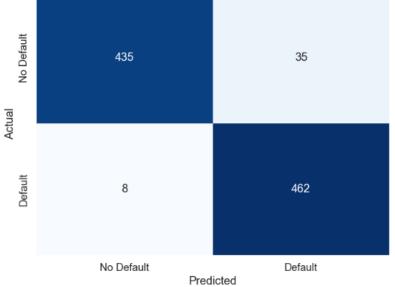
Train the model on the training data
svc_model.fit(X_train_scaled, y_train)

Make predictions on the test data
y_pred_svc = svc_model.predict(X_test_scaled)

Evaluate the model
accuracy_svc = accuracy_score(y_test, y_pred_svc)
print(f'SVM Accuracy: {accuracy_svc:.2f}')

Confusion matrix
conf_matrix_svc = confusion_matrix(y_test, y_pred_svc)
print('SVM Confusion Matrix:\n', conf_matrix_svc)

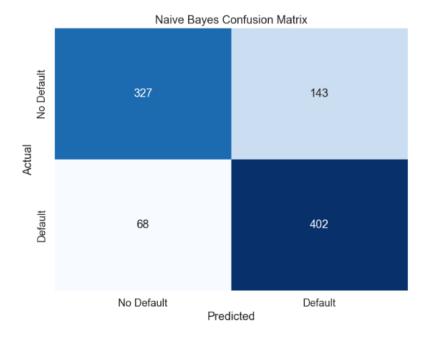

Classification report
class_report_svc = classification_report(y_test, y_pred_svc)
print('SVM Classification Report:\n', class_report_svc)


plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

SVM Log Loss per iteration
y_train_pred_prob_svc = svc_model.predict_proba(X_train_scaled)
y_test_pred_prob_svc = svc_model.predict_proba(X_test_scaled)

Calculate Log Loss log_loss_train_svc = log_loss(y_train, y_train_pred_prob_svc) log_loss_test_svc = log_loss(y_test, y_test_pred_prob_svc)

Plot Train vs Test Log Loss
plt.figure(figsize(10, 6))
plt.bar(['Train Logloss', 'Test Logloss'], [log_loss_train_svc, log_loss_test_svc], color=['blue', 'orange'])
plt.title('Train vs Test Logloss (SVM)')
plt.show()



3. Naïve Bayes Classifier

```
[36]: #Naive Bayes Classifier
       from sklearn.naive_bayes import GaussianNB
      # Initialize the Naive Bayes classifier
       nb_model = GaussianNB()
       # Train the model
      nb_model.fit(X_train_scaled, y_train)
       # Make predictions on the test data
      y_pred_nb = nb_model.predict(X_test_scaled)
       # Evaluate the model
       accuracy_nb = accuracy_score(y_test, y_pred_nb)
      print(f'Naive Bayes Accuracy: {accuracy_nb:.2f}')
       # Confusion matrix
       conf_matrix_nb = confusion_matrix(y_test, y_pred_nb)
       print('Naive Bayes Confusion Matrix:\n', conf_matrix_nb)
       # Classification report
      class_report_nb = classification_report(y_test, y_pred_nb)
      print('Naive Bayes Classification Report:\n', class_report_nb)
      # Plot confusion matrix
       plt.figure(figsize=(8, 6))
```

```
Naive Bayes Accuracy: 0.78
Naive Bayes Confusion Matrix:
[[327 143]
 [ 68 402]]
Naive Bayes Classification Report:
             precision recall f1-score support
               0.83 0.70
0.74 0.86
        0.0
                                    0.76
                                               479
        1.0
                                    0.79
                                               470
    accuracy
                                      0.78
                                                940
                         0.78
               0.78
  macro avg
                                      0.77
                                                940
                                                940
weighted avg
                 0.78
                          0.78
                                     0.77
```

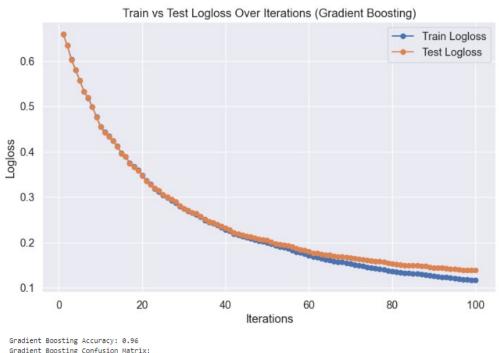

4. Gradient Boosting Classifier

[32]: #Gradient Boosting Classifier

```
# Import necessary Libraries
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import log_loss
import seaborn as sns
```

Initialize the Gradient Boosting classifier
gbc_model = GradientBoostingClassifier(random_state=42)

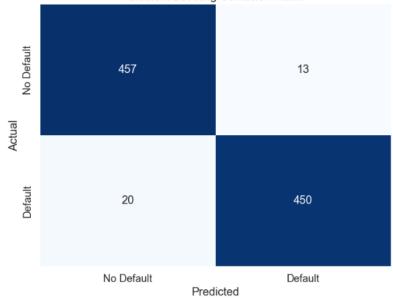
Train the modeL on the training data
gbc_model.fit(X_train_scaled, y_train)


Make predictions on the test data
y_pred_gbc = gbc_model.predict(X_test_scaled)

Evaluate the model
accuracy_gbc = accuracy_score(y_test, y_pred_gbc)
print(f'Gradient Boosting Accuracy: {accuracy_gbc:.2f}')

Confusion matrix
conf_matrix_gbc = confusion_matrix(y_test, y_pred_gbc)
print('Gradient Boosting Confusion Matrix:\n', conf_matrix_gbc)

Classification report
class_report_gbc = classification_report(y_test, y_pred_gbc)
print('Gradient Boosting Classification Report:\n', class_report_gbc)


```
# Plot Train vs Test Log Loss Over Iterations
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(log_loss_train) + 1), log_loss_train, label='Train Logloss', marker='o')
plt.plot(range(1, len(log_loss_test) + 1), log_loss_test, label='Test Logloss', marker='o')
plt.tile('Train vs Test Logloss Over Iterations (Gradient Boosting)')
plt.ylabel('Iterations')
plt.ylabel('Logloss')
plt.legend()
plt.show()
```


Gradient Boosting Accuracy: 0.96 Gradient Boosting Confusion Matrix: [[457 13] [20 450]] Gradient Boosting Classification Rec

Gradient Boo	osting Classif	ication Re	port:	
	precision	recall	f1-score	support
0.0	0.96	0.97	0.97	470
1.0	0.97	0.96	0.96	470
accuracy	/		0.96	940
macro avg		0.96	0.96	940
weighted avg	g 0.96	0.96	0.96	940

Gradient Boosting Confusion Matrix

5. Cat Boost Classifier

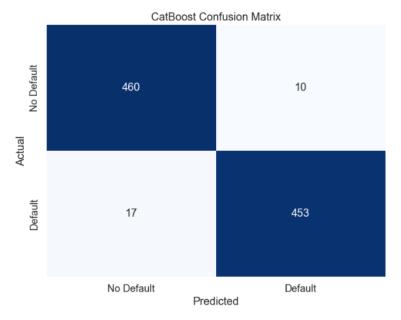
```
[35]: #CatBoost Classifier
```

Import necessary Libraries
from catboost import CatBoostClassifier
Initialize the CatBoost Classifier
catboost_model = CatBoostClassifier(random_state=42, verbose=0)

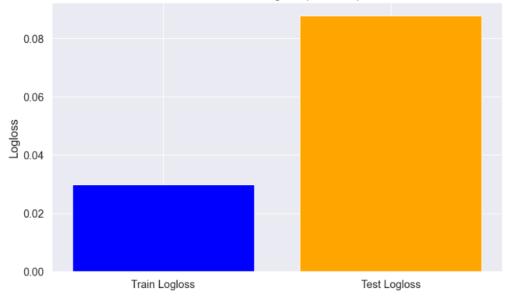
Train the model on the training data
catboost_model.fit(X_train_scaled, y_train)

Make predictions on the test data
y_pred_catboost = catboost_model.predict(X_test_scaled)
y_pred_prob_catboost = catboost_model.predict_proba(X_test_scaled)

Evaluate the model
accuracy_catboost = accuracy_score(y_test, y_pred_catboost)
print(f'CatBoost Accuracy: {accuracy_catboost:.2f}')


Confusion matrix
conf_matrix_catboost = confusion_matrix(y_test, y_pred_catboost)
print('CatBoost Confusion Matrix:\n', conf_matrix_catboost)

Classification report
class_report_catboost = classification_report(y_test, y_pred_catboost)
print('CatBoost Classification Report:\n', class_report_catboost)


```
log_Loss_train_catboost = log_Loss(y_train, catboost_model.predict_proba(X_train_scaled))
log_Loss_test_catboost = log_Loss(y_test, catboost_model.predict_proba(X_test_scaled))
```

```
# Plot Train vs Test Log Loss
plt.figure(figsize=(10, 6))
plt.bar(['Train Logloss', 'Test Logloss'], [log_loss_train_catboost, log_loss_test_catboost], color=['blue', 'orange'])
plt.title('Train vs Test Logloss (CatBoost)')
plt.ylabel('Logloss')
plt.show()
```

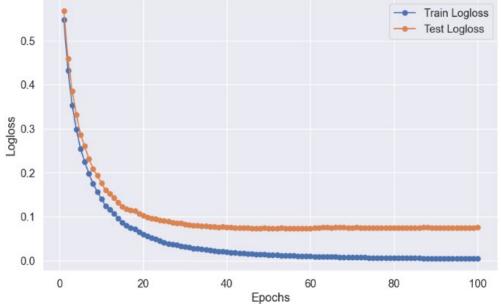
CatBoost [[460 1 [17 453	311	Matrix:			
CatBoost	Classific	ation Rep	ort:		
	pre	cision	recall	f1-score	support
	0.0	0.96	0.98	0.97	470
	1.0	0.98	0.96	0.97	470
accur	acv			0.97	940
		0.07	0.07	0.97	940
macro	-	0.97	0.97	0.97	940
weighted	avg	0.97	0.97	0.97	940

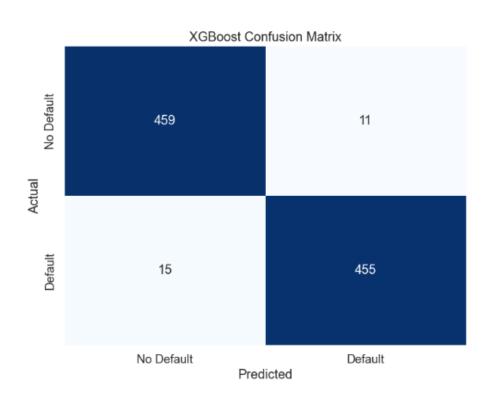
6. XGBoost Classifier

: #	XGBoost Classifier	+: 1	• 1	↓ ≛	₽ #
#	Import necessary Libraries				
	mport xgboost as xgb				
	<pre>rom sklearn.metrics import classification_report, confusion_matrix, accuracy_score</pre>				
	mport matplotlib.pyplot as plt mport seaborn as sns				
1	mport seavorn as sits				
	f Initialize the XGBoost classifier with logging for evaluation metrics				
х	<pre>:gb_model = xgb.XGBClassifier(random_state=42, eval_metric="logloss")</pre>				
#	t Check unique values in y train				
p	rint("Unique values in y_train before transformation:", set(y_train))				
#	t Transform y train and y test if necessary (from -1, 1 to 0, 1)				
	(train = (y train + 1) / 2 # Transforms -1 to 0 and 1 to 1				
У	_test = (y_test + 1) / 2 # Same transformation for y_test				
#	t Check unique values after transformation				
	vrint("Transformed unique values in y_train:", set(y_train))				
	Consta a watch/ict to manitan training and testing performance				
	<pre>t Create a watchList to monitor training and testing performance vval_set = [(X_train_scaled, y_train), (X_test_scaled, y_test)]</pre>				
e	warfeer - [[v_rean_areared, l_rean]) (v_rearforgated) l_rear()]				
	t Train the model on the training data and track logloss				
x	<pre>gb_model.fit(X_train_scaled, y_train, eval_set=eval_set, verbose=False)</pre>				
#	t Extract the evaluation results				
	results = xgb_model.evals_result()				
#	t Make predictions on the test data				
	_pred_xgb = xgb_model.predict(X_test_scaled)				
	f Evaluate the model				
	<pre>iccuracy_xgb = accuracy_score(y_test, y_pred_xgb) iccuracy_score(y_test, y_pred_xgb)</pre>				
p	<pre>rint(f'XGBoost Accuracy: {accuracy_xgb:.2f}')</pre>				
#	t Confusion matrix				
	<pre>conf_matrix_xgb = confusion_matrix(y_test, y_pred_xgb)</pre>				
p	<pre>wrint('XGBoost Confusion Matrix:\n', conf_matrix_xgb)</pre>				
#	Classification report				
	<pre>lass_report_xgb = classification_report(y_test, y_pred_xgb)</pre>				
p	<pre>wrint('XGBoost Classification Report:\n', class_report_xgb)</pre>				
#	Plat Train vs Test Logloss Over Epochs				
e	<pre>pochs = range(1, len(results['validation_0']['logloss']) + 1)</pre>				
р	<pre>htt.figure(figsize=(10, 6))</pre>				
р	<pre>plt.plot(epochs, results['validation_0']['logloss'], label='Train Logloss', marker='o')</pre>				
	<pre>ilt.plot(epochs, results['validation_1']['logloss'], label='Test Logloss', marker='o')</pre>				
	<pre>ilt.title('Train vs Test Logloss Over Epochs (XGBoost)') </pre>				
	<pre>lt.xlabel('Epochs') lt.ylabel('Logloss')</pre>				
	<pre>lt.ylabel(Logloss) lt.legend()</pre>				
	lt.show()				
	t PLot Confusion Matrix				
	<pre>plot Confusion Matrix ilt.figure(figsize=(8, 6))</pre>				
	<pre>ins.heatmap(conf_matrix_xgb, annot=True, fmt="d", cmap="Blues", cbar=False,</pre>				
	<pre>xticklabels=['No Default', 'Default'], yticklabels=['No Default', 'Default'])</pre>				
	<pre>ilt.title('X6Boost Confusion Matrix') ilt.vlabal('Bendicted')</pre>				
	<pre>lt.xlabel('Predicted') lt.ylabel('Actual')</pre>				
P	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>				

Unique values in y_train before transformation: {1.0, -1.0} Transformed unique values in y_train: {0.0, 1.0} XGBoost Accuracy: 0.97 XGBoost Confusion Matrix: [[459 11] [15 455]] XGBoost Classification Report: precision recall f1-score support 0.0 1.0 0.97 0.98 0.97 470 0.97 0.98 0.97 470 accuracy 0.97 940 macro avg 0.97 0.97 0.97 940

0.97


0.97


940

0.97

weighted avg

User Interface

The interface is created using Streamlit.

Loan Default Prediction	
Score Source 3	
0.00	- +
Active Loan	
0	- +
Score Source 1	
0.00	- +
Bike Owned	
0	- +
House Owned	
0	- +
Client City Rating	
0	- +

Score Source 2	
0.00	+
Credit Bureau	
0	÷
Application Process Day	
0	+
Credit Amount	
0.00	+
Population Region Relative	
0	+
Own House Age	
0	÷
Child Count	
0	+

Child Count	
0	+
Registration Days	
0	+
Employed Days	
0	+
Submit and Predict	

Benefits of the Proposed Solution

Building a predictive model for loan approval offers a range of benefits for financial institutions and their customers. Here are some key advantages of such a solution:

1.Improved Decision-Making: The predictive model provides data-driven insights to accurately assess the repayment ability of loan applicants. By automating the credit evaluation process, the system helps loan officers make more informed decisions, reducing the risk of defaults.

2.Reduced Loan Default Rate: By identifying high-risk applicants, the model helps minimize the number of loans given to clients who are likely to default. This reduces financial losses and contributes to healthier loan portfolios for vehicle loan companies.

3.Enhanced Efficiency: Traditional credit assessments are often time-consuming and resourceintensive. The proposed solution significantly reduces the time needed to evaluate loan applicants, allowing financial institutions to handle a larger volume of applications more efficiently.

4.Consistency and Reduced Bias: Machine learning models are not influenced by subjective factors like emotions or biases, which can affect human decision-making. This leads to a more consistent and fair credit evaluation process, ensuring that all applicants are assessed based on objective criteria.

5.Cost Savings: Automating the credit risk assessment process can lead to significant cost reductions in loan processing and reduce the overhead associated with manual evaluations. This helps companies allocate resources more effectively.

6.Improved Customer Experience: Faster and more accurate decisions lead to quicker responses to loan applicants, enhancing the overall customer experience. A smoother loan approval process can also boost customer satisfaction and attract more clients.

Conclusion

In an increasingly competitive financial landscape, vehicle loan companies should adapt to changing demands by embracing data-driven decision-making. The suggested prediction model provides an innovative method to evaluating each loan applicant's risk and provides an accurate assessment of the possibility of repayment.. By using client data effectively, the system not only improves decision accuracy but also minimizes defaults, ensuring a more profitable loan portfolio for financial institutions. The automation of credit assessments addresses the limitations of traditional methods by enhancing both efficiency and consistency in decision-making.

Scalability is a key strength of this solution, enabling companies to meet growing market demand without compromising quality or increasing operational costs. As the vehicle loan sector expands, the ability to handle more applications efficiently while maintaining accuracy becomes crucial. By preventing high-risk loans, financial institutions can significantly reduce the rate of non-performing loans, thus minimizing financial losses and fostering a sustainable business model. Additionally, automated assessment tools allow for faster processing times, enhancing customer experience by delivering prompt and transparent decisions.

Another vital aspect of the proposed solution is its role in customer acquisition and retention. By providing rapid and consistent loan decisions, vehicle loan companies can position themselves as customer-centric, ultimately leading to higher satisfaction rates and increased loyalty. Furthermore, the model's alignment with responsible lending practices and regulatory compliance ensures that companies maintain financial stability while meeting industry standards. Leveraging historical data also enables institutions to make more informed strategic decisions and extract valuable insights from existing datasets.

Overall, the proposed predictive system provides a significant improvement in the credit assessment process, enhancing decision-making capabilities, operational efficiency, and customer experience. By adopting this advanced, data-driven approach, vehicle loan companies can better manage risk, optimize their operations, and create a resilient business model capable of adapting to future growth and challenges.

Project Team, Roles, and Respons	sionnes
Ranasinghe R.Y.G(IT22253880)	Model building
	Model Optimization
	• Deploying the model
	• Design UI
Gamage M.P.L (IT22578082)	Feature Selection
	Feature Engineering
	Exploratory Analysis
	• Design UI
Thiyanima H.E.S(IT22271600)	Data visualization
	Data preprocessing
	Complete project documentation
	Design UI
Dilshan H.M.T.W(IT22562456)	• Deploying the model
	• Design UI
	Feature Engineering
	• Addresses fairness concerns in the
	data and models
Handapangoda C.N(IT22586070)	Data visualization
	Model Evaluation
	Complete project documentation
	• Design UI

Project Team, Roles, and Responsibilities